Package: VWPre 1.2.4
VWPre: Tools for Preprocessing Visual World Data
Gaze data from the Visual World Paradigm requires significant preprocessing prior to plotting and analyzing the data. This package provides functions for preparing visual world eye-tracking data for statistical analysis and plotting. It can prepare data for linear analyses (e.g., ANOVA, Gaussian-family LMER, Gaussian-family GAMM) as well as logistic analyses (e.g., binomial-family LMER and binomial-family GAMM). Additionally, it contains various plotting functions for creating grand average and conditional average plots. See the vignette for samples of the functionality. Currently, the functions in this package are designed for handling data collected with SR Research Eyelink eye trackers using Sample Reports created in SR Research Data Viewer. While we would like to add functionality for data collected with other systems in the future, the current package is considered to be feature-complete; further updates will mainly entail maintenance and the addition of minor functionality.
Authors:
VWPre_1.2.4.tar.gz
VWPre_1.2.4.zip(r-4.5)VWPre_1.2.4.zip(r-4.4)VWPre_1.2.4.zip(r-4.3)
VWPre_1.2.4.tgz(r-4.4-any)VWPre_1.2.4.tgz(r-4.3-any)
VWPre_1.2.4.tar.gz(r-4.5-noble)VWPre_1.2.4.tar.gz(r-4.4-noble)
VWPre_1.2.4.tgz(r-4.4-emscripten)VWPre_1.2.4.tgz(r-4.3-emscripten)
VWPre.pdf |VWPre.html✨
VWPre/json (API)
NEWS
# Install 'VWPre' in R: |
install.packages('VWPre', repos = c('https://vincentporretta.r-universe.dev', 'https://cloud.r-project.org')) |
- VWdat - This is a sample eye-tracking dataset included in the package
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:c78085c7af. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win | OK | Nov 15 2024 |
R-4.5-linux | OK | Nov 15 2024 |
R-4.4-win | OK | Nov 15 2024 |
R-4.4-mac | OK | Nov 15 2024 |
R-4.3-win | OK | Nov 15 2024 |
R-4.3-mac | OK | Nov 15 2024 |
Exports:align_msgbin_propcheck_all_msgscheck_eye_recordingcheck_iacheck_msg_timecheck_samples_per_bincheck_samplingratecheck_time_seriescreate_binomialcreate_time_seriescustom_iads_optionsfasttrackmake_pelogit_fncmark_tracklossplot_avgplot_avg_cdiffplot_avg_contourplot_avg_diffplot_indiv_appplot_transformation_appplot_var_appprep_datarecode_iarelabel_narename_columnsrm_extra_DVcolsrm_trackloss_eventsselect_recorded_eyetransform_to_elogit
Dependencies:base64encbslibcachemclicolorspacecommonmarkcpp11crayondigestdplyrfansifarverfastmapfontawesomefsgenericsggplot2gluegtablehtmltoolshttpuvisobandjquerylibjsonlitelabelinglaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigpromisespurrrR6rappdirsRColorBrewerRcpprlangsassscalesshinysourcetoolsstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrxtable
Aligning Data to a Specific Sample Message
Rendered fromVWPre_Message_Alignment.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2019-07-09
Started: 2019-07-09
Basic VWP Preprocessing
Rendered fromVWPre_Basic_Preprocessing.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2019-07-09
Started: 2019-07-09
Plotting VWP Data Processed with VWPre
Rendered fromVWPre_Plotting.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2020-11-29
Started: 2019-07-09
Relabeling or Defining Interest Areas
Rendered fromVWPre_Interest_Areas.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2019-07-09
Started: 2019-07-09