
Package: VWPre (via r-universe)
September 16, 2024

Type Package

Title Tools for Preprocessing Visual World Data

Version 1.2.4

Date 2020-11-28

Author Vincent Porretta [aut, cre], Aki-Juhani Kyröläinen [aut],
Jacolien van Rij [ctb], Juhani Järvikivi [ctb]

Maintainer Vincent Porretta <vincentporretta@gmail.com>

Description Gaze data from the Visual World Paradigm requires
significant preprocessing prior to plotting and analyzing the
data. This package provides functions for preparing visual
world eye-tracking data for statistical analysis and plotting.
It can prepare data for linear analyses (e.g., ANOVA,
Gaussian-family LMER, Gaussian-family GAMM) as well as logistic
analyses (e.g., binomial-family LMER and binomial-family GAMM).
Additionally, it contains various plotting functions for
creating grand average and conditional average plots. See the
vignette for samples of the functionality. Currently, the
functions in this package are designed for handling data
collected with SR Research Eyelink eye trackers using Sample
Reports created in SR Research Data Viewer. While we would
like to add functionality for data collected with other systems
in the future, the current package is considered to be
feature-complete; further updates will mainly entail
maintenance and the addition of minor functionality.

Depends R (>= 3.5.0), dplyr (>= 0.7.0)

Imports rlang (>= 0.1.1), ggplot2 (>= 2.2.0), mgcv (>= 1.8-16), shiny
(>= 0.14.2), tidyr (>= 0.6.0), stats (>= 3.3.2)

License GPL-3

LazyData true

Suggests knitr, rmarkdown, gridExtra, itsadug

VignetteBuilder knitr

Encoding UTF-8

1

2 Contents

RoxygenNote 7.1.0

NeedsCompilation no

Date/Publication 2020-11-29 17:10:02 UTC

Repository https://vincentporretta.r-universe.dev

RemoteUrl https://github.com/cran/VWPre

RemoteRef HEAD

RemoteSha c78085c7af96e16ce68c515c413d0ded0ed33a04

Contents
.check_for_PupilPre . 3
align_msg . 3
bin_prop . 4
check_all_msgs . 5
check_eye_recording . 6
check_ia . 6
check_msg_time . 7
check_samples_per_bin . 8
check_samplingrate . 8
check_time_series . 9
create_binomial . 10
create_time_series . 11
custom_ia . 12
ds_options . 12
fasttrack . 13
make_pelogit_fnc . 15
mark_trackloss . 16
plot_avg . 16
plot_avg_cdiff . 19
plot_avg_contour . 20
plot_avg_diff . 21
plot_indiv_app . 23
plot_transformation_app . 24
plot_var_app . 24
prep_data . 25
recode_ia . 26
relabel_na . 27
rename_columns . 28
rm_extra_DVcols . 28
rm_trackloss_events . 29
select_recorded_eye . 30
transform_to_elogit . 31
VWdat . 32
VWPre . 32

Index 35

.check_for_PupilPre 3

.check_for_PupilPre Internal helper function, not intended to be called externally.

Description

Internal helper function, not intended to be called externally.

Usage

.check_for_PupilPre(type, suggest)

Arguments

type A string, "NotAvailable" of "UseOther".

suggest A string, PupilPre function name.

Value

Text feedback and instruction.

align_msg Aligns samples to a specific message.

Description

align_msg examines the data from each recording event and locates the first instance of the speci-
fied message in the column SAMPLE_MESSAGE. The function creates a new column containing
the aligned series which can be utilized by subsequent functions for checking and creating the time
series column.

Usage

align_msg(data, Msg = NULL)

Arguments

data A data table object output from prep_data.

Msg An obligatory string containing the message to be found in the column SAM-
PLE_MESSAGE or a regular expression for locating the appropriate message.

Value

A data table object.

4 bin_prop

Examples

Not run:
To align the samples to a specific message...
library(VWPre)
df <- align_msg(data = dat, Msg = "ExperimentDisplay")

For a more complete tutorial on VWPre plotting functions:
vignette("SR_Message_Alignment", package="VWPre")

End(Not run)

bin_prop Bins the sample data and calculates proportion looks by interest area

Description

bin_prop calculates the proportion of looks (samples) to each interest area in a particular window of
time (bin size). This function first checks to see if the procedure is possible given the sampling rate
and desired bin size. It then performs the calculation and downsampling, returning new columns
corresponding to each interest area ID (e.g., ’IA_1_C’, ’IA_1_P’). The extention ’_C’ indicates the
count of samples in the bin and the extension ’_P’ indicates the proportion. N.B.: This function will
work for data with a maximum of 8 interest areas.

Usage

bin_prop(data, NoIA = NULL, BinSize = NULL, SamplingRate = NULL)

Arguments

data A data table object output by select_recorded_eye or check_samplingrate.

NoIA A positive integer indicating the number of interest areas defined when creating
the study.

BinSize A positive integer indicating the size of the binning window (in milliseconds).

SamplingRate A positive integer indicating the sampling rate (in Hertz) used to record the gaze
data, which can be determined with the function check_samplingrate.

Value

A data table with additional columns (the number of which depends on the number of interest areas
specified) added to data.

check_all_msgs 5

Examples

Not run:
library(VWPre)
Bin samples and calculation proportions...
df <- bin_prop(dat, NoIA = 4, BinSize = 20, SamplingRate = 1000)

End(Not run)

check_all_msgs Output all messages with timestamps

Description

check_all_msgs outputs all sample messages present in the data. Optionally, the result can be
output to a dataframe containing all event-level information.

Usage

check_all_msgs(data, ReturnData = FALSE)

Arguments

data A data table object output by prep_data, align_msg, or create_time_series.

ReturnData A logical indicating whether to return a data table containing Message Time
information for each event.

Value

All Sample Messages found in the data.

Examples

Not run:
library(VWPre)
Check all messages in the data...
check_all_msgs(data = dat)

End(Not run)

6 check_ia

check_eye_recording Check which eyes were recorded during the experiment

Description

check_eye_recording quickly checks which eyes contain gaze data either using the EYE_TRACKED
column (if available) or the Right and Left interest area columns. It prints a summary and suggests
which setting to use for the Recording parameter in the function select_recorded_eye.

Usage

check_eye_recording(data)

Arguments

data A data table object output by create_time_series.

Value

Text feedback and instruction.

Examples

Not run:
library(VWPre)
Create a unified columns for the gaze data...
check_eye_recording(dat)

End(Not run)

check_ia Check the interest area IDs and labels

Description

check_ia examines both the interest area IDs and interest area labels (and their mapping) for both
eyes. It returns a summary of the information and will stop if the data are not consistent with the
requirements for further processing.

Usage

check_ia(data)

Arguments

data A data table object output by relabel_na.

check_msg_time 7

Value

The value(s) and label(s) of interest areas and how they map for each eye.

Examples

Not run:
library(VWPre)
Check the interest area information...
check_ia(dat)

End(Not run)

check_msg_time Check the time value(s) at a specific message

Description

check_msg_time examines the time point of a specific Sample Message for each event. Depending
on the format of the data, it will use one of three columns: TIMESTAMP, Align, or Time. If times
at which the message occurs are equal, it will return a single value. Optionally, the result can be
output to a dataframe containing all event-level information.

Usage

check_msg_time(data, Msg = NULL, ReturnData = FALSE)

Arguments

data A data table object output by relabel_na, align_msg, or create_time_series.

Msg A character string containing the exact message to be found in the column SAM-
PLE_MESSAGE or a regular expression for locating the appropriate message.

ReturnData A logical indicating whether to return a data table containing Message Time
information for each event.

Value

The value(s) of Time (in milliseconds) at which the Sample Message is found.

Examples

Not run:
library(VWPre)
Check the Sample Message time...
check_msg_time(data = dat)

End(Not run)

8 check_samplingrate

check_samples_per_bin Check the number of samples in each bin

Description

check_samples_per_bin determines the number of samples in each bin produced by bin_prop.
This function may be helpful for determining the obligatory parameter ‘ObsPerBin‘ which is input
to transform_to_elogit.

Usage

check_samples_per_bin(data)

Arguments

data A data table object output by bin_prop.

Value

A printed summary of the number of samples in each bin.

Examples

Not run:
library(VWPre)
Determine the number of samples per bin...
check_samples_per_bin(dat)

End(Not run)

check_samplingrate Determine the sampling rate present in the data

Description

check_samplingrate determines the sampling rate in the data. This function is helpful for de-
termining the obligatory parameter input to bin_prop. If different sampling rates were used, the
function adds a sampling rate column, which can be used to subset the data for further processing.

Usage

check_samplingrate(data, ReturnData = FALSE)

Arguments

data A data table object output by select_recorded_eye.
ReturnData A logical indicating whether to return a data table containing a new column

called SamplingRate

check_time_series 9

Value

A printed summary and/or a data table object

Examples

Not run:
library(VWPre)
Determine the sampling rate...
check_samplingrate(dat)

End(Not run)

check_time_series Check the new time series

Description

check_time_series examines the first value in the Time column for each event. If they are equal,
it will return a single value. The returned value(s) will vary depending on the interest period (if
defined), message alignment (if completed), and the Adjustment parameter (‘Adj‘) supplied to
create_time_series. Optionally, the result can be output to a dataframe containing all event-
level information.

Usage

check_time_series(data, ReturnData = FALSE)

Arguments

data A data table object output by create_time_series.

ReturnData A logical indicating whether to return a data table containing Start Time infor-
mation for each event.

Value

The value(s) of Time (in milliseconds) at which events begin relative to the onset of the auditory
stimulus.

Examples

Not run:
library(VWPre)
Check the starting Time column...
check_time_series(data = dat)

End(Not run)

10 create_binomial

create_binomial Creates a success/failure column for each IA based on counts.

Description

create_binomial uses interest area count columns to create a success/failure column for each IA
which is suitable for logistic regression. N.B.: This function will work for data with a maximum of
8 interest areas.

Usage

create_binomial(
data,
NoIA = NULL,
ObsPerBin = NULL,
ObsOverride = FALSE,
CustomBinom = NULL

)

Arguments

data A data table object output by either bin_prop or transform_to_elogit.

NoIA A positive integer indicating the number of interest areas defined when creating
the study.

ObsPerBin A positive integer indicating the number of observations to use in the calculation.
Typically, this will be the number of samples per bin, which can be determined
with check_samples_per_bin.

ObsOverride A logical value controlling restrictions on the value provided to ObsPerBin. De-
fault value is FALSE.

CustomBinom An optional parameter specifying a vector containing two integers correspond-
ing to the interest area IDs to be combined.

Value

A data table with additional columns (the number of which depends on the number of interest areas
specified) added to data.

Examples

Not run:
library(VWPre)
Create binomial (success/failure) column...
df <- create_binomial(data = dat, NoIA = 4, ObsPerBin = 20)

End(Not run)

create_time_series 11

create_time_series Create a time series column

Description

create_time_series standardizes the starting point for each event, creates a time series for each
event including the offset for the amount of time prior to (or after) the zero point. The time series is
indicated in a new column called Time.

Usage

create_time_series(data, Adjust = 0)

Arguments

data A data table object output by relabel_na or align_msg.

Adjust Optionally an integer value or a text string. If an integer (positive or negative),
this will indicate an amount of time in milliseconds. The value is subtracted from
the time points: positive values shift the zero forward; negative values shift the
zero backward. If a text string, this will be the name of a column in the data
set which contains values indicating when the critical stimulus was presented
relative to the zero point.

Value

A data table object.

Examples

Not run:
library(VWPre)
To create the Time column...
df <- create_time_series(data = dat, Adjust = "SoundOnsetColumn")
or
df <- create_time_series(data = dat, Adjust = -100)
or
df <- create_time_series(data = dat, Adjust = 100)

End(Not run)

12 ds_options

custom_ia Map gaze data to newly defined interest areas

Description

custom_ia uses a lookup data frame to map Left and Right gaze data to newly defined/supplied in-
terest areas for each recording event. The lookup data should contain columns Event, IA_LABEL,
IA_ID, Top, Bottom, Left, Right, which specify the Interest area label, its corresponding ID, and the
boundaries (in pixel values) for each recording event. The function will overwrite existing columns
RIGHT_INTEREST_AREA_LABEL, RIGHT_INTEREST_AREA_ID, LEFT_INTEREST_AREA_LABEL,
and LEFT_INTEREST_AREA_ID.

Usage

custom_ia(data, iaLookup = NULL)

Arguments

data A data table object output by prep_data.

iaLookup A data frame object containing by-event mapping information.

Value

A data table object.

Examples

Not run:
library(VWPre)
Map gaze data to newly defined interest areas...
df <- custom_ia(data = dat, iaLookup = LookUpDF)

For a more complete tutorial on VWPre plotting functions:
vignette("SR_Interest_Areas", package="VWPre")

End(Not run)

ds_options Determine downsampling options based on current sampling rate

Description

ds_options determines the possible rates to which the current sampling rate can downsampled. It
then prints the options in both bin size (milliseconds) and corresponding sampling rate (Hertz).

fasttrack 13

Usage

ds_options(SamplingRate, OutputRates = "Suggested")

Arguments

SamplingRate A positive integer indicating the sampling rate (in Hertz) used to record the gaze
data, which can be determined with the function check_samplingrate.

OutputRates A string ("Suggested" or "All") controlling if all rates are output, or if only
whole rates (default) are output.

Value

A printed summary of options (bin size and rate) for downsampling.

Examples

Not run:
library(VWPre)
Determine downsampling options...
ds_options(SamplingRate = 1000)

End(Not run)

fasttrack Fast-track basic preprocessing

Description

fasttrack is a meta-function for advanced users who are already familiar with the package func-
tions and do not need to take remedial actions such as recoding interest areas, remapping gaze data,
or performing message alignment.It takes all necessary arguments for the component functions to
produce proportion looks and can output either empirical logits or binomial data. The function
returns a dataframe containing the result of the series of subroutines.

Usage

fasttrack(
data = data,
Subject = NULL,
Item = NA,
EventColumns = c("Subject", "TRIAL_INDEX"),
NoIA = NoIA,
Adjust = 0,
Recording = NULL,
WhenLandR = NA,
BinSize = NULL,
SamplingRate = NULL,

14 fasttrack

ObsPerBin = NULL,
ObsOverride = FALSE,
Constant = 0.5,
CustomBinom = NULL,
Output = NULL

)

Arguments

data A data frame object created from an Eyelink Sample Report.

Subject An obligatory string containing the column name corresponding to the subject
identifier.

Item An optional string containing the column name corresponding to the item iden-
tifier; by default, NA.

EventColumns A vector specifying the columns which will be used for creating the Event vari-
able; by default, Subject and TRIAL_INDEX.

NoIA A positive integer indicating the number of interest areas defined when creating
the study.

Adjust An integer indicating amount of time in milliseconds by which to offset the time
series.

Recording A string indicating which eyes were used for recording gaze data.

WhenLandR A string indicating which eye ("Right" or "Left) to use if gaze data is available
for both eyes (i.e., Recording = "LandR").

BinSize A positive integer indicating the size of the binning window (in milliseconds).

SamplingRate A positive integer indicating the sampling rate (in Hertz) used to record the gaze
data.

ObsPerBin A positive integer indicating the desired number of observations to be used in
the calculations.

ObsOverride A logical value controlling restrictions on the value provided to ObsPerBin. De-
fault value is FALSE.

Constant A positive number used for the empirical logit and weights calculation; by de-
fault, 0.5 as in Barr (2008).

CustomBinom An optional parameter specifying a vector containing two integers correspond-
ing to the interest area IDs to be combined.

Output An obligatory string containing either "ELogit" or "Binomial".

Value

A data table containing formatting and calculations.

Examples

Not run:
library(VWPre)
Perform meta-function on data

make_pelogit_fnc 15

df <- fasttrack(data = dat, Subject = "RECORDING_SESSION_LABEL", Item = "itemid",
EventColumns = c("Subject", "TRIAL_INDEX"), NoIA = 4, Adjust = 100,

Recording = "LandR", WhenLandR = "Right", BinSize = 20,
SamplingRate = 1000, ObsPerBin = 20, Constant = 0.5,
Output = "ELogit")

End(Not run)

make_pelogit_fnc Create function for back-transforming empirical logits to proportions

Description

make_pelogit_fnc creates a function that can transform empirical logit values back to probability
scale using the number of samples and constant that were used in the original transformation. This
function can then be use to backtransform value predicted by a statistical model.

Usage

make_pelogit_fnc(ObsPerBin = NULL, Constant = NULL)

Arguments

ObsPerBin A positive integer indicating the number of observations used in the original
transformation calculation.

Constant A positive number used in the original transformation calculation.

Value

A function.

Examples

Not run:
library(VWPre)
Make backtransformation function
pelogit <- make_pelogit_fnc(20, 0.5)

End(Not run)

16 plot_avg

mark_trackloss Mark trackloss by blink and/or screen size

Description

mark_trackloss marks data points related to trackloss for those in blink, off-screen, or both.

Usage

mark_trackloss(data, Type = NULL, ScreenSize = NULL)

Arguments

data A data table object output by select_recorded_eye.

Type A string indicating "Blink", "OffScreen", or "Both".

ScreenSize A numeric vector specifying (in pixels) the dimensions of the x and y of the
screen used during the experiment.

Value

An object of type data table as described in tibble.

Examples

Not run:
library(VWPre)
Mark trackloss...
df <- mark_trackloss(data = dat, Type = "Both", ScreenSize = c(1920, 1080))

End(Not run)

plot_avg Plots average looks to interest areas.

Description

plot_avg calculates the grand or conditional averages of looks to each interest area along with
standard error. It then plots the results. N.B.: This function will work for data with a maximum of
8 interest areas and 2 conditions.

plot_avg 17

Usage

plot_avg(
data,
type = NULL,
xlim = NA,
IAColumns = NULL,
Averaging = "Event",
Condition1 = NULL,
Condition2 = NULL,
Cond1Labels = NA,
Cond2Labels = NA,
ErrorBar = TRUE,
VWPreTheme = TRUE,
ConfLev = 95,
CItype = "simultaneous",
ErrorBand = FALSE,
ErrorType = "SE"

)

Arguments

data A data table object output by either bin_prop. transform_to_elogit, or
create_binomial.

type A character string indicating "proportion" or "elogit" which influences how stan-
dard error and confidence intervals are calculated.

xlim A vector of two integers specifying the limits of the x-axis.

IAColumns A named character vector specifying the desired interest area columns with cus-
tom strings for the legend.

Averaging A character string indicating how the averaging should be done. "Event" (de-
fault) will produce the overall mean in the data, while "Subject" or "Item" (or, in
principle, any other column name) will calculate the grand mean by that factor.

Condition1 A string containing the column name corresponding to the first condition, if
available.

Condition2 A string containing the column name corresponding to the second condition, if
available.

Cond1Labels A named character vector specifying the desired custom labels of the levels of
the first condition.

Cond2Labels A named character vector specifying the desired custom labels of the levels of
the second condition.

ErrorBar A logical indicating whether error bars should be included in the plot.

VWPreTheme A logical indicating whether the theme included with the function should be
applied, or ggplot2’s base theme (to which any other custom theme could be
added).

ConfLev A number indicating the confidence level of the CI.

18 plot_avg

CItype A string indicating "simultaneous" or "pointwise". Simultaneous performs a
Bonferroni correction for the interval.

ErrorBand A logical indicating whether error bands should be included in the plot.

ErrorType A string indicating "SE" or "CI". For SE, the calculation varies for empirical
logits and proportions. Further, for CI, the calculation on proportions uses the
Wald method.

Examples

Not run:
library(VWPre)
For plotting the grand average with the included theme and SE bars
plot_avg(data = dat, type = "elogit", xlim = c(0, 1000),

IAColumns = c(IA_1_ELogit = "Target", IA_2_ELogit = "Rhyme",
IA_3_ELogit = "OnsetComp", IA_4_ELogit = "Distractor"),
Averaging = "Event", Condition1 = NA, Condition2 = NA,
Cond1Labels = NA, Cond2Labels = NA,
ErrorBar = TRUE, VWPreTheme = TRUE, ErrorType = "SE",
ErrorBand = FALSE)

For plotting conditional averages (one condition) with the included theme
and 95% simultaneous CI bars.
This produces plots arranged horizontally
plot_avg(data = dat, type = "elogit", xlim = c(0, 1000),

IAColumns = c(IA_1_ELogit = "Target", IA_2_ELogit = "Rhyme",
IA_3_ELogit = "OnsetComp", IA_4_ELogit = "Distractor"),
Averaging = "Event", Condition1 = NA, Condition2 = "talker",
Cond1Labels = NA,
Cond2Labels = c(CH1 = "Chinese 1", CH10 = "Chinese 3", CH9 = "Chinese 2",
EN3 = "English 1"), ErrorBar = TRUE, VWPreTheme = TRUE,
ErrorBand = FALSE, ErrorType = "CI", ConfLev = 95, CItype = "simultaneous")

For plotting conditional averages (two conditions) for one interest area
with the included theme and 95% simultaneous CI bands.
This produces plots arranged in grid format.
plot_avg(data = dat, type = "elogit", xlim = c(0, 1000),

IAColumns = c(IA_1_ELogit = "Target"), Averaging = "Event",
Condition1 = "talker", Condition2 = "Exp",
Cond1Labels = c(CH1 = "Chinese 1", CH10 = "Chinese 3", CH9 = "Chinese 2",
EN3 = "English 1"), Cond2Labels = c(High = "H Exp", Low = "L Exp"),
ErrorBar = FALSE, VWPreTheme = TRUE, ErrorBand = TRUE,
ErrorType = "CI", ConfLev = 95, CItype = "simultaneous")

#' # For a more complete tutorial on VWPre plotting functions:
vignette("SR_Plotting", package="VWPre")

End(Not run)

plot_avg_cdiff 19

plot_avg_cdiff Plots average difference between two conditions.

Description

plot_avg_cdiff calculates the average of differences between two specified conditions along with
standard error and then plots the results.

Usage

plot_avg_cdiff(
data,
IAColumn = NULL,
xlim = NA,
type = NULL,
Averaging = "Subject",
Condition = NULL,
CondLabels = NA,
ErrorBar = TRUE,
VWPreTheme = TRUE,
ConfLev = 95,
CItype = "simultaneous",
ErrorBand = FALSE,
ErrorType = "SE"

)

Arguments

data A data table object output by either bin_prop. transform_to_elogit, or
create_binomial.

IAColumn A character vector specifying the desired column corresponding to the interest
area.

xlim A vector of two integers specifying the limits of the x-axis.

type A character string indicating "proportion" or "elogit", which influences how
standard error and confidence intervals are calculated.

Averaging A character string indicating how the averaging should be done. "Subject" (de-
fault) will produce the grand mean in the data, while "Item" (or, in principle, any
other column name) will calculate the grand mean by that factor.

Condition A list containing the column name corresponding to the condition and factor
levels to be used for calculating the difference.

CondLabels A named character vector specifying the desired labels of the levels of the con-
dition.

ErrorBar A logical indicating whether error bars should be included in the plot.

20 plot_avg_contour

VWPreTheme A logical indicating whether the theme included with the function should be
applied, or ggplot2’s base theme (to which any other custom theme could be
added).

ConfLev A number indicating the confidence level of the CI.

CItype A string indicating "simultaneous" or "pointwise". Simultaneous performs a
Bonferroni correction for the interval.

ErrorBand A logical indicating whether error bands should be included in the plot.

ErrorType A string indicating "SE" or "CI".

Examples

Not run:
library(VWPre)
For plotting average difference between conditions...
plot_avg_cdiff(data = dat, xlim = c(0, 1000), type = "proportion",

IAColumn = "IA_1_P", Condition = list(talker = c("EN3", "CH1")),
CondLabels = NA, ErrorBar = TRUE, VWPreTheme = TRUE,
ErrorBand = FALSE, ErrorType = "SE")

For a more complete tutorial on VWPre plotting functions:
vignette("SR_Plotting", package="VWPre")

End(Not run)

plot_avg_contour Plots average contour surface of looks to a given interest area.

Description

plot_avg_contour calculates the conditional average of proportions or empirical logit looks to a
given interest area by Time and a specified continuous variable. It then applies a 3D smooth (derived
using gam) over the surface and plots the results as a contour plot.

Usage

plot_avg_contour(
data,
IA = NULL,
type = NULL,
Var = NULL,
Averaging = "Event",
VarLabel = NULL,
xlim = NA,
VWPreTheme = TRUE,
Colors = c("gray20", "gray90")

)

plot_avg_diff 21

Arguments

data A data table object output by either bin_prop. transform_to_elogit, or
create_binomial.

IA A string specifying the column name of the IA to use.

type A character string indicating "proportion" or "elogit".

Var A string containing the column name corresponding to the continuous variable.

Averaging A character string indicating how the averaging should be done. "Event" (de-
fault) will produce the overall mean in the data, while "Subject" or "Item" (or, in
principle, any other column name) will calculate the grand mean by that factor.

VarLabel A string specifying the axis label to use for Var.

xlim A vector of two integers specifying the limits of the x-axis.

VWPreTheme A logical indicating whether the theme included with the function, or ggplot2’s
base theme (which any other custom theme could be added).

Colors A vector of two strings specifying the colrs of the contour shading - The default
values represent grayscale.

Examples

Not run:
library(VWPre)
For plotting a conditional contour surface...
plot_avg_contour(data = dat, IA = "IA_1_ELogit", type = "elogit",

Var = "Rating", VarLabel = "Accent Rating", xlim = c(0,1000),
VWPreTheme = FALSE, Colors = c("red", "white"))

For a more complete tutorial on VWPre plotting functions:
vignette("SR_Plotting", package="VWPre")

End(Not run)

plot_avg_diff Plots average difference between looks to two interest areas.

Description

plot_avg_diff calculates the grand or conditional averages of differences between looks to two
interest area along with standard error. It then plots the results.

Usage

plot_avg_diff(
data,
DiffCols = NULL,
xlim = NA,
type = NULL,

22 plot_avg_diff

Averaging = "Event",
Condition1 = NULL,
Condition2 = NULL,
Cond1Labels = NA,
Cond2Labels = NA,
ErrorBar = TRUE,
VWPreTheme = TRUE,
ConfLev = 95,
CItype = "simultaneous",
ErrorBand = FALSE,
ErrorType = "SE"

)

Arguments

data A data table object output by either bin_prop. transform_to_elogit, or
create_binomial.

DiffCols A named character vector specifying the desired columns corresponding to the
interest areas.

xlim A vector of two integers specifying the limits of the x-axis.

type A character string indicating "proportion" or "elogit" which influences how stan-
dard error and confidence intervals are calculated.

Averaging A character string indicating how the averaging should be done. "Event" (de-
fault) will produce the overall mean in the data, while "Subject" or "Item" (or, in
principle, any other column name) will calculate the grand mean by that factor.

Condition1 A string containing the column name corresponding to the first condition, if
available.

Condition2 A string containing the column name corresponding to the second condition, if
available.

Cond1Labels A named character vector specifying the desired labels of the levels of the first
condition.

Cond2Labels A named character vector specifying the desired labels of the levels of the second
condition.

ErrorBar A logical indicating whether error bars should be included in the plot.

VWPreTheme A logical indicating whether the theme included with the function should be
applied, or ggplot2’s base theme (to which any other custom theme could be
added).

ConfLev A number indicating the confidence level of the CI.

CItype A string indicating "simultaneous" or "pointwise". Simultaneous performs a
Bonferroni correction for the interval.

ErrorBand A logical indicating whether error bands should be included in the plot.

ErrorType A string indicating "SE" or "CI".

plot_indiv_app 23

Examples

Not run:
library(VWPre)
For plotting average differences with SE bars...
plot_avg_diff(data = dat, xlim = c(0, 1000), type = "proportion",

DiffCols = c(IA_1_P = "Target", IA_2_P = "Rhyme"),
Condition1 = NA, Condition2 = NA, Cond1Labels = NA, Cond2Labels = NA,
ErrorBar = TRUE, VWPreTheme = TRUE, ErrorBand = FALSE,
ErrorType = "SE")

For plotting conditional average differences (one condition) with the
included theme and 95% pointwise CI bars.
plot_avg_diff(data = dat, xlim = c(0, 1000), , type = "proportion",

DiffCols = c(IA_1_P = "Target", IA_2_P = "Rhyme"),
Condition1 = "talker", Condition2 = NA, Cond1Labels = c(CH1 = "Chinese 1",
CH10 = "Chinese 3", CH9 = "Chinese 2", EN3 = "English 1"),
Cond2Labels = NA, ErrorBar = TRUE,
VWPreTheme = TRUE, ErrorBand = FALSE,

ErrorType = "CI", ConfLev = 95, CItype = "pointwise")

For plotting conditional average differences (two conditions) with the
included theme and 95% simultaneous CI bands.
plot_avg_diff(data = dat, xlim = c(0, 1000), , type = "proportion",

DiffCols = c(IA_1_P = "Target", IA_2_P = "Rhyme"),
Condition1 = "talker", Condition2 = "Exp", Cond1Labels = c(CH1 = "Chinese 1",
CH10 = "Chinese 3", CH9 = "Chinese 2", EN3 = "English 1"),
Cond2Labels = c(High = "H Exp", Low = "L Exp"), ErrorBar = FALSE,
VWPreTheme = TRUE, ErrorBand = TRUE,

ErrorType = "CI", ConfLev = 95, CItype = "simultaneous")

For a more complete tutorial on VWPre plotting functions:
vignette("SR_Plotting", package="VWPre")

End(Not run)

plot_indiv_app Plots diagnostic average plots of subjects/items.

Description

plot_indiv_app calculates and plots interest area averages for a given subject/item.

Usage

plot_indiv_app(data)

Arguments

data A data table object output by either bin_prop. transform_to_elogit, or
create_binomial.

24 plot_var_app

Examples

Not run:
library(VWPre)
For plotting subject/item averages
plot_indiv_app(data = dat)

End(Not run)

plot_transformation_app

Plots diagnostic plots of the empirical logit transformation.

Description

plot_transformation_app plots the empirical logit values for a given number of observations
and constant against proportions, in order to examine the effect of these variables on the resulting
transformation.

Usage

plot_transformation_app()

Examples

Not run:
library(VWPre)
For plotting the empirical logit transformation
plot_transformation_app()

End(Not run)

plot_var_app Plots diagnostic plots of subject/item variance.

Description

plot_var_app calculates and plots within-subject/item standard deviation, along with standardized
by-subject/item means for a given interest area, within a given time window.

Usage

plot_var_app(data)

Arguments

data A data table object output by either bin_prop. transform_to_elogit, or
create_binomial.

prep_data 25

Examples

Not run:
library(VWPre)
For plotting variability in the data
plot_var_app(data = dat)

End(Not run)

prep_data Check the classes of specific columns and re-assigns as necessary.

Description

prep_data converts the data frame to a data table and examines the required columns (RECORD-
ING_SESSION_LABEL, LEFT_INTEREST_AREA_ID, RIGHT_INTEREST_AREA_ID, LEFT_INTEREST_AREA_LABEL,
RIGHT_INTEREST_AREA_LABEL, TIMESTAMP, and TRIAL_INDEX) and optional columns
(SAMPLE_MESSAGE, LEFT_GAZE_X, LEFT_GAZE_Y, RIGHT_GAZE_X, and RIGHT_GAZE_Y).
It renames the subject and item columns, ensures required/optional columns are of the appropriate
data class, and creates a new column called Event which indexes each unique series of samples
corresponding to the combination of Subject and TRIAL_INDEX (can be changed), necessary for
performing subsequent operations.

Usage

prep_data(
data,
Subject = NULL,
Item = NA,
EventColumns = c("Subject", "TRIAL_INDEX")

)

Arguments

data A data frame object created from an Eyelink Sample Report.

Subject An obligatory string containing the column name corresponding to the subject
identifier.

Item An optional string containing the column name corresponding to the item iden-
tifier; by default, NA.

EventColumns A vector specifying the columns which will be used for creating the Event vari-
able; by default, Subject and TRIAL_INDEX.

Value

An object of type data table as described in tibble.

26 recode_ia

Examples

Not run:
Typical DataViewer output contains a column called "RECORDING_SESSION_LABEL"
corresponding to the subject.
To prepare the data...
library(VWPre)
df <- prep_data(data = dat, Subject = "RECORDING_SESSION_LABEL", Item = "ItemCol")

End(Not run)

recode_ia Recode interest area IDs and/or interest area labels

Description

recode_ia replaces existing interest area IDs and/or labels for both eyes. For subsequent data
processing, it is important that the ID values range between 0 and 8 (with 0 representing Outside all
predefined interest areas).

Usage

recode_ia(data, IDs = NULL, Labels = NULL)

Arguments

data A data table object output by relabel_na.

IDs A named character vector specifying the desired interest area IDs and the cor-
responding existing IDs where the first element is the old value and the second
element is the new value.

Labels A named character vector specifying the desired interest area labels and the
corresponding existing labels where the first element is the old value and the
second element is the new value.

Value

A data table with the same dimensions as data.

Examples

Not run:
library(VWPre)
To recode both IDs and Labels...
df <- recode_ia(data=dat, IDs=c("234"="2", "0"="0", "35"="3", "11"="1",
"4"="6666"), Labels=c(Outside="Outside", Target="NewTargName",
Dist2="NewDist2Name", Comp="NewCompName", Dist1="NewDist1Name"))

For a more complete tutorial on VWPre plotting functions:
vignette("SR_Interest_Areas", package="VWPre")

relabel_na 27

End(Not run)

relabel_na Relabel samples containing ’NA’ as outside any interest area

Description

relabel_na examines interest area columns (LEFT_INTEREST_AREA_ID, RIGHT_INTEREST_AREA_ID,
LEFT_INTEREST_AREA_LABEL, and RIGHT_INTEREST_AREA_LABEL) for cells contain-
ing NAs. If NA, the missing values in the ID columns are relabeled as 0 and missing values in the
LABEL columns are relabeled as ’Outside’.

Usage

relabel_na(data, NoIA = NULL)

Arguments

data A data table object output by prep_data.

NoIA A positive integer indicating the number of interest areas defined when creating
the study.

Value

A data table with the same dimensions as data.

Examples

Not run:
library(VWPre)
To relabel the NAs...
df <- relabel_na(data = dat, NoIA = 4)

End(Not run)

28 rm_extra_DVcols

rename_columns Rename default column names for interest areas.

Description

rename_columns will replace the default numerical coding of the interest area columns with more
meaningful user-specified names. For example, IA_1_C and IA_1_P could be converted to IA_Target_C
and IA_Target_P. Again, this will work for upto 8 interest areas.

Usage

rename_columns(data, Labels = NULL)

Arguments

data A data table object output by either bin_prop. transform_to_elogit, or
create_binomial.

Labels A named character vector specifying the interest areas and the desired names to
be inserted in place of the numerical labelling.

Value

A data table object with renamed columns.

Examples

Not run:
library(VWPre)
For renaming default interest area columns
dat2 <- rename_columns(dat, Labels = c(IA1="Target", IA2="Rhyme",

IA3="OnsetComp", IA4="Distractor"))

End(Not run)

rm_extra_DVcols Checks for and removes unnecessary DV output columns.

Description

rm_extra_DVcols checks for unnecessary DataViewer output columns and removes them, unless
specified.

Usage

rm_extra_DVcols(data, Keep = NULL)

rm_trackloss_events 29

Arguments

data A data frame object created from an Eyelink Sample Report.

Keep An optional string or character vector containing the column names of SR sam-
ple report columns the user would like to keep in the data set.

Value

An object of type data table as described in tibble.

Examples

Not run:
library(VWPre)
df <- rm_extra_DVcols(data = dat, Keep = NULL)

End(Not run)

rm_trackloss_events Removes events with excessive trackloss

Description

rm_trackloss_events removes events with less data than the specified amount.

Usage

rm_trackloss_events(data = data, RequiredData = NULL)

Arguments

data A data table object output by mark_trackloss.

RequiredData A number indicating the percentage of data required to be included (i.e., removes
events with less than this amount of data).

Value

An object of type data table as described in tibble.

Examples

Not run:
library(VWPre)
Remove events...
df <- rm_trackloss_events(data = dat, RequiredData = 50)

End(Not run)

30 select_recorded_eye

select_recorded_eye Select the eye used during recording

Description

select_recorded_eye examines each event and determines which eye contains interest area infor-
mation, based on the Recording parameter (which can be determined using check_eye_recording).
This function then selects the data from the recorded eye and copies it to new columns (IA_ID,
IA_LABEL, IA_Data). The function prints a summary of the output.

Usage

select_recorded_eye(data, Recording = NULL, WhenLandR = NA)

Arguments

data A data table object output by create_time_series.

Recording A string indicating which eyes were used for recording gaze data ("R" when
only right eye recording is present, "L" when only left eye recording is present,
"LorR" when either the left or the right eye was recorded, "LandR" when both
the left and the right eyes were recorded).

WhenLandR A string indicating which eye ("Right" or "Left) to use if gaze data is available
for both eyes (i.e., Recording = "LandR").

Value

A data table with four additional columns (’EyeRecorded’, ’EyeSelected’, ’IA_ID’, ’IA_LABEL’,
’IA_Data’) added to data.

Examples

Not run:
library(VWPre)
Create a unified columns for the gaze data...
df <- select_recorded_eye(data = dat, Recording = "LandR", WhenLandR = "Right")

End(Not run)

transform_to_elogit 31

transform_to_elogit Transforms proportion looks to empirical logits.

Description

transform_to_elogit transforms the proportion of looks for each interest area to empirical logits.
Proportions are inherently bound between 0 and 1 and are therefore not suitable for some types of
analysis. Logits provide an unbounded measure, though range from negative infinity to infinity, so
it is important to know that this logit function adds a constant (hence, empirical logit). Additionally
this calculates weights which estimate the variance in each bin (because the variance of the logit
depends on the mean). This is important for regression analyses. N.B.: This function will work for
data with a maximum of 8 interest areas.

Usage

transform_to_elogit(
data,
NoIA = NULL,
ObsPerBin = NULL,
Constant = 0.5,
ObsOverride = FALSE

)

Arguments

data A data table object output by bin_prop.

NoIA A positive integer indicating the number of interest areas defined when creating
the study.

ObsPerBin A positive integer indicating the number of observations to use in the calculation.
Typically, this will be the number of samples per bin, which can be determined
with check_samples_per_bin.

Constant A positive number used for the empirical logit and weights calculation; by de-
fault, 0.5 as in Barr (2008).

ObsOverride A logical value controlling restrictions on the value provided to ObsPerBin. De-
fault value is FALSE.

Details

These calculations were adapted from: Barr, D. J., (2008) Analyzing ’visual world’ eyetracking
data using multilevel logistic regression, Journal of Memory and Language, 59(4), 457–474.

Value

A data table with additional columns (the number of which depends on the number of interest areas
specified) added to data.

32 VWPre

Examples

Not run:
library(VWPre)
Convert proportions to empirical logits and calculate weights...
df <- transform_to_elogit(dat, NoIA = 4, ObsPerBin = 20, Constant = 0.5)

End(Not run)

VWdat This is a sample eye-tracking dataset included in the package

Description

This is a sample eye-tracking dataset included in the package

Author(s)

Vincent Porretta

VWPre VWPre: Tools for Preprocessing Visual World Data.

Description

The VWPre package provides a set of functions for preparing Visual World data collected with SR
Research Eyelink eye trackers.

Formatting functions

• The function create_time_series returns a time columns in milliseconds.

• The function prep_data returns a data table with correctly assigned classes for important
columns.

• The function relabel_na returns a data table with samples containing ’NA’ relabeled as out-
side any interest area.

• The function recode_ia returns a data table containing recoded interest area IDs and/or inter-
est area labels.

• The function select_recorded_eye returns a data table with data from the the recorded eye
in new columns (IA_ID and IA_LABEL).

• The function custom_ia returns a data table with gaze data remapped to new interest areas.

• The function align_msg returns a data table with newly aligned sample data in a new column
(Align).

• The function rm_extra_DVcols removed DataViewer coumns that are not necessary for pre-
processing with this package.

VWPre 33

Calculation functions

• The function bin_prop returns a downsampled data table containing proportion of looks (sam-
ples) to each interest area in a particular window of time (bin size).

• The function transform_to_elogit returns a data table with proportion looks transformed
to empirical logits with weights.

• The function create_binomial returns a data table with a new success/failure column for
each IA which is suitable for logistic regression.

Trackloss functions

• The function mark_trackloss returns a data table with data information regarding trackloss
of the sample.

• The function rm_trackloss_events returns a data table from which events without the min-
imum amount of quality data have been removed.

Fasttrack formatting function

• The function fasttrack a meta-function that returns a data table of processed data containing
the result of the series of necessary subroutines. This is intended for experienced users doing
basic preprocessing.

Data-checking functions

• The function check_eye_recording returns a summary of whether or not the dataset contains
gaze data in both the Right and Left interest area columns.

• The function check_time_series returns the first value in the Time column for each event.

• The function check_samples_per_bin returns the number of samples in each bin.

• The function check_samplingrate returns the value corresponding to the sampling rate in
the data.

• The function ds_options returns the binning (downsampling) options possible for the given
sampling rate.

• The function check_ia returns a summary of the interest area IDs and Labels present in the
data.

• The function check_msg_time returns a summary of the the time value at a given sample
message for each recording event.

• The function check_all_msgs returns all messages in the data and their time stamp.

Plotting functions

• The function plot_avg returns a plot of the grand or conditional averages of proportion (or
empirical logit) looks to each interest area along with error bars.

• The function plot_avg_contour returns a contour plot of the conditional average of propor-
tion (or empirical logit) looks to a given interest area over Time and a specified continuous
variable.

34 VWPre

• The function plot_avg_diff returns a plot of the grand or conditional averages of the differ-
ence between looks to two interest areas (proportions or empirical logits) with error bars.

• The function plot_avg_cdiff returns a plot of the average difference between two conditions
for looks to a given interest area (proportions or empirical logits) with error bars.

• The function make_pelogit_fnc returns a function that can backtransform predicted empiri-
cal logit to probability scale, particularly (though not exclusively) useful for plotting purposes.

Interactive functions

• The function plot_transformation_app opens a Shiny app for visualizing the effect of both
number of observations and constant on the results of the empirical logit transformation and
weight calculations.

• The function plot_indiv_app opens a Shiny app for inspecting by-subject or by-item aver-
ages for all interest areas, alongside the grand average (for proportion or empirical logit looks)
within a specified time window.

• The function plot_var_app opens a Shiny app for inspecting by-subject or by-item Z-scores
with respect to the overall mean for a given interest area within a specified time window.

Notes

• The vignettes are available via browseVignettes(package = "VWPre").

• A list of all available functions is provided in help(package = "VWPre").

• This package can be cited using the information obtained from citation("VWPre") or print(citation("VWPre"),
bibtex = TRUE)

Author(s)

Vincent Porretta, Aki-Juhani Kyröläinen, Jacolien van Rij, Juhani Järvikivi

Maintainer: Vincent Porretta (<vincentporretta@gmail.com>)

University of Windsor, Canada

Index

∗ data
VWdat, 32

.check_for_PupilPre, 3

align_msg, 3, 5, 7, 11, 32

bin_prop, 4, 8, 10, 17, 19, 21–24, 28, 31, 33

check_all_msgs, 5, 33
check_eye_recording, 6, 30, 33
check_ia, 6, 33
check_msg_time, 7, 33
check_samples_per_bin, 8, 10, 31, 33
check_samplingrate, 4, 8, 13, 33
check_time_series, 9, 33
create_binomial, 10, 17, 19, 21–24, 28, 33
create_time_series, 5–7, 9, 11, 30, 32
custom_ia, 12, 32

ds_options, 12, 33

fasttrack, 13, 33

gam, 20

make_pelogit_fnc, 15, 34
mark_trackloss, 16, 29, 33

plot_avg, 16, 33
plot_avg_cdiff, 19, 34
plot_avg_contour, 20, 33
plot_avg_diff, 21, 34
plot_indiv_app, 23, 34
plot_transformation_app, 24, 34
plot_var_app, 24, 34
prep_data, 5, 12, 25, 27, 32

recode_ia, 26, 32
relabel_na, 6, 7, 11, 26, 27, 32
rename_columns, 28
rm_extra_DVcols, 28, 32

rm_trackloss_events, 29, 33

select_recorded_eye, 4, 6, 8, 16, 30, 32

tibble, 16, 25, 29
transform_to_elogit, 8, 10, 17, 19, 21–24,

28, 31, 33

VWdat, 32
VWPre, 32

35

	.check_for_PupilPre
	align_msg
	bin_prop
	check_all_msgs
	check_eye_recording
	check_ia
	check_msg_time
	check_samples_per_bin
	check_samplingrate
	check_time_series
	create_binomial
	create_time_series
	custom_ia
	ds_options
	fasttrack
	make_pelogit_fnc
	mark_trackloss
	plot_avg
	plot_avg_cdiff
	plot_avg_contour
	plot_avg_diff
	plot_indiv_app
	plot_transformation_app
	plot_var_app
	prep_data
	recode_ia
	relabel_na
	rename_columns
	rm_extra_DVcols
	rm_trackloss_events
	select_recorded_eye
	transform_to_elogit
	VWdat
	VWPre
	Index

